
RADC-TR-72-11
Technical Report
January 1972

SOME NEW TYPES OF CELLULAR ARRAY COMPUTERS

Polytechnic Institute of Brooklyn

Approved for public release;
distribution unlimited.

4\

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Bose, New York
t

LII
(Pi

Do not rer~rn this copy.. Retain or destroy.,

UNCLASSIFIED
Secunt Classficat:ion

DOCUMENT CONTROL DATA * R & D
(Security classification of tille, body of abstract and indexing annotAtion must be entered when the overall report Is classified)

ORIGINATING ACTIVITY (Corporate author) t;a. REPORT SECURITY CLASSIFICATION

Pol,,technic Institute of Brooklyn UNCLASSIFIED
Route 110 1b RU

Farmingdale, LI NY 11735
IREPORT TITLE

SOME NEW TYPES OF CELLULAR ARRAY COmPUTERS

* ~4 DESCRIPTIVE NOTES (Type of report and Inclusive. date#)

Phase Report
A AU THORIS) (First name, middle initial, last neme)

A. E. Laemmel

6 RE-OAT DATE 70. TOTAL NO OF PAGES 1b. NO OF REPS

January 197M 39 39
BS CONTRACT OR GRANT NO 9a. ORIGINATOR's REPORT I4UMBERIS)

FN0602-69-C-0053
b " - PIBEP-71-103
Job Order No. 85050000
c b. OTHER REPORT NOMSi (Any other number. that may be aeeelged

this report)

d RADC-TR-72-11
10 OISTRIBUTION STATEMENT

Arnroved for public release; distribution unlimited.

Ii SUPPLEMENTARY NOTES 12. SPONSORING Mli.ITARY ACTIVITY

Rome Air Development Center (ISCP) ..
Griffiss Air Force Base, New York 13440

13 ABSTRACT

This rer-rt describes several new design methods and applications for parallel
comnuters whi. consist of large arrays of simple cells. A linear memory structure
is described which might be used as a compression coder, associative memory, or as a
fast memory with sic. components. k very simple cell with a somewhat novel type of
comnputation-universality is applied in a distributed optical processor. Several ways
to speed un Turing machines with multiple heads are described.

DD NOV 1473 UNCLASSIFIED
Securitv Classi•ication

* 1TqrT.A~qTpTMf
Security Classification K A L - -

KEY WORDS LINK A RLINK TINK C
ROLE WT RoLE WY ROLE WY

Cormuters
Parallel
Automata
Logic
Memory
Array
TurinR Machine

-'-

Security Classfittcai.-

4 9

SOME NEW TYPES OF CELLULAR ARRAY COMPUTERS

A. E. Laemmcl

Polytechnic Inscitute of Brooklyn

Approved for public release;
distribution unlimited.

I

FOREWORD

This phase report wes prepared under Contract F30602-69-C-o053 by
Polytechnic Institute of Brooklyn under Job Order No. 85080000, PIB No.
PIBEP-71-103.

Haywood E. Webb, Jr. (ISCP) was the RADC project engineer.

This technical report has been reviewed by the Office of Information
(01) and is releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved.

4

Approved:' "• '
HAYW OD E. WE3BB, JR

Pro' ct Engineer

Approved: DAAIEL R. LORETO, Chief

Computer Technology Branch

•' ii

ABSTRACT

This report desciibes several new design methods and applications for parallel

computers which consist of large arrays of simple cells. A linear memory struc-

ture is described which might be used as a compression coder, associative memory,

or as a fast memory with slow, components. A very simple cell with a somewhat

novel type of computation-universality is applied in a distributed optical plocesbo,'.

Several ways to speed up Turing machines with r. altiple heads are described.

qM

I

I X

.-6i

TABLE OF CONTENTS

1., Introductio n 1

2. Sequential logic 4

3. A rrays 10

4. Optical process 12

5. A linear memory array 16

6., Multihead Turing machintes22

7. Variable length coding 31

8, Appendix j, Logic Circuit Complexity. 32

Q. References 35

V

1. INTRODUCTION.

This report describes some of the work on automata and computers, under Con-
tract F 30602-69-C-0053 with the Rome Air Development Center of the Air Force
Systems Command. Some previous reports concerning the above contract on these

topicq are listed as references 1-6, and these contain certain details not repeated

here.

The general aim of thin report is to consider alternatives to the familiar digital
computer architecture. Broadly speaking, practically all digital computers operate

sequentially, so that the alternative usually implies some sort of parallel computer.

The question of sequential vs. parallel computer has been debated many times, and

many different types of parallel computers have been proposed, This report does not

purport to cover either the debate or the types of parallel computer, but rather to
present some views on the alternatives, some novel design methods for cellular com-
puters, and some examples of applications which appear to have promise of practicality,

Some idea of the spectrum of computer types can be gained from Fig. 1. The
arrangement is roughly that greater parallelism, which means more operations going
on simultaneously, to the right, and greater efficiency to the top. This arrangement
should not be taken too quantitatively. Starting at the upper left, note the digital com-
puter-Turing machine axis. Under digital computers are included all of what might
be called the von Neumann model,* ENIAC, 709, 360, PDP8, etc. Of course there
are large differences in architecture among these computers, and some parallelism
(of input-output, for example), but they are all characterized by their going thru a
program step by step. The step carried out by a digital computer is a small step, say
adding two integers and fetching the next instruction from memory. If the step is made
still smaller, one arrives at the Turing machine, (10) which is shown below digital
computers in the spectrum because it is so slow in solving any practical problem. The

Turing machine is so slow, in fact, that none has ever been built. A universal Turing
machine could be built very cheaply indeed, as they are remarkably simple. All that
is needed is a read-write-control head with a few bits of register storage, and a very
large supply of tape as the main store.

In Fig. I there is a box marked "cellular automata." This ri-fers to a computer
which consists of a very large number of very simple cells. The cellular automata are
the computers with architecture most different from the usual ones. The diagram sug-
gests that there are two distinct paths from the digital computer-Turing machine region
to the cellular automata. The upper path starts at a box marked "computer networks."

John von Neumann is usually mentioned as the one person who best be singled out for
crystallizing the modern digital computer design.(7 ' 8) In the present context this ii
ironic, since he also designed the first cellular computer.(9)

• 1

z

2 24

S-i

0

0 L)

c .cr ,

-j

-J
M

2I

((12)E"xanples would be the ARPA network,(' or the Illiac IV.(12) For the samre total cost

as a single large sequential computer, the individual processing elements would have

to be much smaller than what is now considered a large digital computer, say one of

the larger 36 0's- but they still are, in the Iliac 1V, about the size of a medium size

computer of a few years ago. There is a considerable difference of opinion as to

whether it is bettor to put till of one's resources into a single large computer or an
array of smaller computers, For a set of papers championing each approach, see

reference 13. One of the principal arguments against parallelism is the difficulty of

programming a universal parallel computer, yet one of the pioneers of automatic pro-

gramming, Grace Hopper, has recently favored the array of smaller computers,. 1 4)

The whole question is too involved to even briefly enter here, but it is certainly of some

interest to examine what might happen if the trend is continued to some sort of bound,

i.e., to make the processing elements simpler and simpler, but more and more numer-

ous. As suggested in Fig. 1, a point will be reached where the processing element

ceases to be universal because it is too small. At this point, which will not be sharply

defined, some drop in efficiency might occur. Figure I pessimistically shows this,

On the other hand, for a f.xed cost the simpler processing elements could increase the

.fficiency, so that "cellular autoaaltv" might be above "digital computer."

The second path away from the usual sequential types starts out very poorly by

going to the all-e!ectronic Turing machine. This is a device in which the tape is re-

placed by an electronic register and in which the head moves by shifting its state sig-

nal along an adjacent register. This structure is then a linear array of Cells which

each store head state and tape symbol.(4) Incidentally, this model nicely :suggests a

physical meaning for Shannon's state-symbol product measure of complexIty,(1 5) the

product being the total number of cell states. As suggested in Fig. 1, such an elec-

tronic Turing machine would be very inefficient, The cost of the electronic cells

would more than make up any increase in speed, so that the electronic Turing machfne

would be hopelessly impractical. The difficulty is that only one simple cell is active

at a time. This is the antithesis of parallel operation. However, the electronic

Turing machine does allow multihead operation at no additional cost, and this will

increase the efficiency Several ways to use multiple heads are suggested in Librizzi's
(4)thesis and below in this report. The lower path in Fig. I suggests that in the 'imit

where there is a head, i.e., activity, in almost all cells, the cellular automata box is

again approached.

Computers on a third path in Fig. I deviate from the usual digital computer in that

there are several data streams being processed simultaneously, but they differ from

other parallel computers in that there is only one instrutetion stream. If the "instruc-

tion stream" only determines the cell state transitions and independently of the problem

(as in Section 3), the cellular automata box on the right is again approached.

3

In the upper right of Fig. 1 is shown the brain. It appears to the right since there

mu~t be a large amount of parallelism to operate as it does with very slow neutral or

chemical elements. It appears up on the diagram since it is obviously 'v.Jry efficient,

having designed all the other computer types. No path leads to it as none has the

faintest idea about how it Is constructed or how it operates.

In comparing different computer types the criteria of efficiency, cost, etc. must

be first established in some quantitative way. Also, it must be decided what clase of

problems the computer is to work on, how many users are to be served simultaneously,

etc. The four boxes in the upper left of Fig, i are labelled so as to agree with the

terminology of reference 13, wherein will be found comments on which problems each

computer seem suited to. As a general rule, parallel computers will show up poorly

if the problem and program are simply transferred from a large sequential computer.

Parallel computers show up well in at least 4 large classes of problems:

I) Problems which are inherently parallel in nature and which can be put on a

parallel computer in what is almost an analog way. Included here are weather

prediction, hydrodynamics, many-particle problems, stress-strain problems,

etc.

ii) Pattern recognition, picture processing, multichannel filtering, and other

cases where the data is multidimensional.

iii) Matrix operations, linear programming, etc.

iv) Information storage and retrieval, large ecale search and trial-and-error

methods, and similar problemp, in artificial intelligence.

2. SEQUENTIAL LOGIC

A paper by Krohn, Ma-.rer, and Rhodes(16) describes an alternative to what they

call the "Shannon method" fo" realizing Boolean functions. The Shannon method is the

familiar one using AND, OR, and NOT gates but no memory. Their alternative is to

design a fairly simple sequential circuit so that the output at a certain time is the

desired Boolean function. The alternative method turns out to be mathematically

similar to Maitra cascade,(1 7) but the hardware is quite different. Actually, the se-

quential method has been in use for many years; for example, a simple toggle flip-flop

can generate the parity function which would require a large number of gates in a zero-

memory circuit. Other familiar examples are the counter, serial adder, and accumula-

tor multiplier-divider. As a matter of fact, the whole modern digital computer repre-

sents this principle of operating sequentially; it would be possible in theory to make a

lcgic circuit with 10 x 10 x 30 Boolean inputs and outputs which would instantly provide

the inverse of a 10 x 10 matrix, but the complexity would be astronomical. What is

being proposed here may sound paradoxical: to make a parallel computer by using

4

sequential logical elements. The seeming paradox arises because sequential logic

circuits gain their simplicity at the expense of operating time, and the whole purpose

of the parallel computer is to speed up certain repetitive calculations. It is hoped the

resolution of the paradox can be realized if the factor by which logical operations can

be paralleled (due to lower element cost) will exceed the factor by which the time of

elemental logical operations are increased.

The idea of sequential logic probably first appeared (in cascade form) in the 1962

paper of Maitra.(18) The original Maitra cascade had only one binary rail connecting

the elements, and was not capable of realizing an arbitrary Boolean function. Shortl' 9)

has shown that a two rail cascade can be designed to realize an arbitrary Boolean func-
lion is at least two very simple ways, and his approach will be used here. Yoeli and

others have shown that, not only can a two rail cascade realize a pair of arbitrary

Boolean functions,(20) but an M-ary rail can realize an arbitrary M-ary function of

M > 3.(21) The design of these more general, and probably more efficient, cascades

requires some fairly involved group theory and will not be used in the present report.
A trivial generalization of Short's method can realize m arbitrary Boolean functions

,vith m + I rails, i. e., an arbitrary M-ary function with 2 M-ary rail signals. Just

provide an extra sum rail for each function required, and add the products into the

indicated number of sum rails as they are completed.

The easiest way to design a cascade or sequential logic circuit is to express the

desired Boolean function as a sum of products, refering to the Boolean operations of

AND and OR respectively, The way this works can be seen at a glance in Fig. 2(a) for

the function

f~x 1 ,x 2 ,x 3) 1 3 2 3

The lower rail accumulates the products, the upper rail accumulates the sum of the

product.i and eventually has the desired function. The first version has two cell types,
0 and Q , but as shown in Fig. 2(b) a single type suffices if a control signal is
provided to change its function. Since there is now only one type of cell, the possi-

bility of using the same cell veer and over suggests itself. This is accomplished by

feeding the two rail signals back into the same cell after a small delay as shown in

Fig. 2(c). Note that this very simple circuit becom.es no more complex no matter how
complicated the function f is or how many arguments it has. Of course, the time of

operation and the complexity of the control signal do depend on f and the number of its
arguments. The arguments which are to be fed into Fig. 2(c,) can conveniently be ob-

taited . a shift register as shown in Fig. 2(d). The block A is the circuit shown in

Fig. 2(c), except that it is modified to complement the x. before multiplying it in, if

required by the function being realized. In Fig. 2(d) the control is shown operating the
two-way shift register to bring the next required xi under block A. Several variants.

5

rr
0- f _Y

i oI ,K

Fig., 2(a). Cascade of Z types of (eli.

L +

X X2 X

Fig. 2(1;. C, (ade of irlhni,• ell•.'

u = 1,0,1,0, I (CONTROL SIGNALS)

DELAY

+ f (x1, x 2 , x)
AT (t = 5)

+

DELAY

Xh1 x, X2, x' (ARGUMENTS)

Fig. 2(c Seouen•tal version of Z(h ab,,ve,

CONTROL SIGNALS A f
S(+ OR *,COMPLEMENT) A_ t

CONTROL

SHIFT
SIGNALS X, X2_x

SHIFT REGISTER

Fig., 2(d), Sequential logic with argument register,.

6

in this process are possible - for example, it •ould be desired to present all the x.

to A in a regular pattern (shift signals periodic and independent of fl. In this case an-

other control signal meaning "ignore the present x." could be added, thus permitting1

the more economical sum-of-products expansion of f rather than the surn-of-minterms

which would otherwise be required by the complete periodic shifting.

The shift registe - in Fig. 2(d) could be a circulating dynamic shift register thus

reducing its cost and eliminating the control leads for shifting. If a half adder is put

in the circulating register loop the minterms will be generated sequentially thus

eliminating tbe need for the complernentation control signal. The control would tell

A either to include a riinterm or to ignore it, i. e., the control would be the truth table

of the desired functi,,n f. However, this version would greatly increase the operation

time and would not fit in with the applications to be described below.

The time requiired for the sequential logic to form the desired Boolean function is

the critical fa-tor vwhich is needed to compare it to ordinary switching circuits. The

complexity of •he control will be ignored here because the sequential logic will be used

only where it is replcated mai.v times, thus sharing the cost of the control and making

it unimportant. The complexity -f the sequential element itself is important, since it

is desired to minimize the product of operating time and element complexity. Sequen.-

tial logic operating time is equivalent to cascade length, and the p. oduct referred to is

equivalent to total cascade complexity. The last statement is true only if the variabl'

can be presented in the required order.

In making estimates of operating time, it is useful to generalize the cascade shown

in Fig. 2(a). As shown, the cascade generates a single Boolean function with 2 rails,

and has a length which is equal to the auumber of contacts in a 2 level relay circuit. if

k > 2 rails are provided, the cascade can realize a single Boolean function with the

slightly better efficiency than a k level gate logical circuit (with fan-out limited to 1,

i. e., no reentrant paths). If the initialization when starting the function is ignured,.

and if the variables are available either complemented or not as required, then a set

of k cell types will suffice as shown in Fig. 3(a). It might also be observed, as shown

in Fig. 3(b), that a k-rail cascade can actually form k-1 independent Boolean functions,

but that only one will be a k-level realization, one a (k-l)-level realization, etc. Be-

fore considering tr es, it might be pointed out that it will sometimes not be necessary

to form several functions simultaneously if the cascade cells are allowed to have out-

4 puts as well as inputs. This fact, together with the fact that non-binary cell inputs can

be handled simply by coding them in binary and using a longer cascade, is illustrated

in Fig. 4. A conventional parallel adder is shown at the top as an interactive array of

half adders (HA) and full adders (FA., Next, the FA's are realized as 2-HA's and an

OR(+). Note that 2 binary rails are required, as indicated by the general theory. The

last line shows a circuit to generate carries only. This world be longer if a sum of

7

S.il
-4

CELLS FOR 2-LEVEL. CIRCUITS CELLS FOR 3-LEVEL CIRCUITS

"ALTERNATIVE TYPE
CELLS FOR 4-LEVEL CIRCUITS OF CELL

Fig. 3(a), Sets of cell types.

o F -,.-

X y z y y X W y Z

f (X +y') (z+y)+ X (z'+y') g X' (w+y+z)

Fig. 3(b). Illustrating 3-level logic (with an extra 2-level function).

6+

REPLACING "AND" WITH "IMPLIES" REDUCING TYPES WITH PERMUTING CELLS

Fig. 3 Cascade versions of logic circuits with more than 2 levels.,

8

S

i sis sj s 4

5 a2 x3 y4

!.'

"HA C FA C F

x1 YA xt Y2 X3 Y3

1112 $3 $4

!r H A! ' HA 6 HA C HA 8 ' H A
L J -t- L_ - L-t___J _- -J L- --J LJ

x, Y1 X? Y2 X3 Y3

X1 Y1 x2 Y2) ,X3 Y3

XI~ YI Xg Y X,3 3

CASCADE FORMING CARRIES ONLY

Fig. 4. Comparison of Parallel Adders and Cascades.

0

*" products were used, just as a skip carry circuit is more complicated than the iterative

• .ripple carry circuit. Note that the iterative circuit can be repeated indefinitely. In-

creasing the number of levels (rails) to a fixed number would not accomplish the same

end.

The operation time of sequential logic (or the length of a cascade) can either be
calculated for the function desired, or as bounds or estimated value for a class of

functions. If the class is that of all Boolean functions, the bounds tend to be very

pessimistic. The bounds in Appendix 1 are all exponential in the number of variables

n, but as was suggested by the adder for a pair of n-digit numbers, the functions of

practical interest are more likely to have a linear increase (or at least not exponential,

perhaps a power of n). Functions of practical interest usually have symmetries which

allow iterative circuits, or else can be decomposed into several simpler functions.

A crude numerical comparison of sequential and combinatorial logic will now be
made by reference to Fig. 5(c). This pertains to an array of finite state machines

(Section 3) as an application. The cost (time-complexity product) of the combinatorial

logic will be [1lrB(n) + F], while that of the sequential circuit will be [2A(n)][16 + 3F].

These both assume 2-level realizations, A(n) and B(n) are defined in Appendix 1, and

F is the cost of a 1 bit store (flip-flop) relative to a gate input. Many assumptions

have been made, several of which would cause the sequential circuit to look a little

better if they were modified. However, the cost of the sequential circuit is 32 times

that of the combinatorial circuit in gate inputs, 6 times in storage elements, and these

figures would probably be always greater than one for the type of circuit shown. Why

then use sequential logic? There are several possible reasons: The sequential logic

is versatile, i. e., the same circuit applies to any function. The initial cost is less

for large n, since the second bracket in sequential logic is independent of n. The

cost estimates would be much less in some realizations, e. g., the optical processor

of Section 4. There might be a gain in reliability!6) Also, efficient group-theoretic

designs(17)' could reduce operating times and generate two functions instead of one.

3. ARRAYS

There is considerable current interest in arrays of logical cells such as the
Maitra 23) (24-26)

Maitra cascade,(22' and in arrays of finite state machines, i. e., cells with

a memory. A one dimensional array of finite state machines is shown in Fig. 5(a).

Each machine consists of a memory register x and a logical next-state circuit F. The

next state of the i'th cell is a given function of its present state xi and of the present

states d neighbors on each side of xl dpxi d+l..xi lxi+l...xi+Z,..xi+d. The

circuit F which calculates this function is identical in each cell (except for its inputs),

but it must be repeated in each cell. A sequential logic alternative is shown in Fig. 5(b).

10

F F F FX. 1 X .

Fig. 5(a). Array of finite state machines.

CONTROL

A A AASHIFT SIGNALS

.4r

Fig. 5(b). Equivalent array using sequential logic.

INUT

SEQUENTiAL LOGIC COMBINATORIAL LOGIC

Fig. 5(c). Sequential lol,ic size independent of n.
.1

The only complicated par., the control box, serves -he cels and therefore con-

tributes little to the overall complexity. The cell stat tre stored in a shift register,

and hence there need be no wire communication to distant cells if d is large. Note

that the argument shift registers shown in Fig. 2(d) are not duplicated in each cell

since a common argument register serves all cells. The xi+r of one cell is the Xi+r. I

of its neighbor on the right. The shift signals would cause a continual repetition of che

pattern (2d-l) right shifts, (2d-1) left shifts, (2d-l) right shifts, etc.

A very desirable feature of Fig. 5(b) is that the array structure is independent of

both the next state function f(xi..d * • xi+d) and of the neighborhood size 2d+ 1. It is

clearly much easier to modify Fig. 5(b) than Fig. 5(a)! It must again be emphasized

that the gains in simplicity and versatility are at the expension of operating time.

However, large arrays of the type of Fig. 5(a) are seldom built, but rather a sequen-

tial computer is usually used to carry out the function F cell by cell. It is especially

against the latter methvd that the sequential logic array should be able to successfully

compete in many applications. More specific circuits for the array will be found in

reference 1.

4. OPTICAL PROCESSOR

The need for parallel processing is most urgent with two dimensional signals. The

number of resolution elements goes ap with the square of the number of resolution lines.

Thus, a sequential computer must go over all of the many resolution elements as many

times as required in an iterative picture processing process. The tim, required for

this totally sequential calculation makes many applications impractical. especially in

real time, even with the very high operating speeds of modern central processing

units. Parallel processing has already found useful applications in synthetic aperture

radars (where the processing is done optically in analog fashiont) and in automatically

counting human white blood cells(34-37) (where the processing s done electronically

in digital fashion). Similar applications, where some trials hare been made or sug-

gested, are recognition of written or printed text, detection of objects in aerial photo-

graphs, improvement of resolution in optical images, solution of two dimensional

partial differential equations, "games" imitating life processes, etc.

A two dimensional version of the sequential logic array processor is shown in

Fig. 6(a). This looks complicated, but fortunately it is not necessary to make an

electronic digital register unit and processing cell for each ree.lution element. The

argument array merely stores the inputs to the logic cells and shifts them so that

each cell sees its neighboring arguments in a suitable periodic pattern. The argument

array could then be any of the several de-ices which have been proposed to store opti-

cal patterns, and the shifting could be accomplished by projecting the argument array

on the cell array with a lens system with an electronically controlled prism to jiggle

12

0f

~AA TWO

SINAL I DIMENSIONAL
A-CELLTWO ARRAY

DIMENSIONALS

ARRAY

IIf

If

SHIFT CONTROL
5IGNAL~SIGNALS(UP/DC~w (bAME TO ALL CELLS)

, RIGHT/ LEFT)

Fig. 6(a). Two dimensional analog of 2(d).

"ARGUMENT
REGISTER 4

.000

ELECTRONICALLY
CONTROLLED

JIGGLE PRISMS

Fig. 6(b). Optical shift register.
13

the image (two dimensional shifting to neighboring cells). This jiggling is periodic

and might be done mechanically by either vibrating the argument register, or mirrors

reflecting its image on the processing array, but the speed would not then match the
other components. If electron optics are used the shifting would be done by ordinary

CRT deflection plates.

In order to see how the processing array of cells can be made, an optical element

instead of an array of discrete electronic elements, consider the more detailed ver-

sion of Fig. 5(b) which is shown in Fig. 7(a). Recall that each A-cell of the former

actually has a 2 bit memory corresponding to the ewo rails of a cascade, the product

(p) rail and the sum (s) rail. In the array application of sequential logic the Boolean

functions generated (f) are to be returned to the argument register (x), and a set of

gates to accomplish this is shown at the top of Fig. 7(a). Note that the 0 gates be-

tween the x and p registers, and the G registers between the p and s registers

handle multichannel signals under the control of a single control voltage. This sug-
gests using distributed gates over ihe optical image as is shown in Fig. 7(b). The

gate between the p and s registers, on the other hand, simultaneously turns all of the

multichannel signals on or off. The latter can be a light valve in the plane of the lens

which focuses the image of the p register on the s register. The same applies to the

gates which return the u register "mage to the x register, but in this case a path must

be provided around or thru the p register, If a NOT is available, either the AND(.) or

the OR(+) can be avoided by deMorgan's laws xy = (x'+ y)l and x+y = (x y')'.

The requirements for the distr buted optical sequential logic processor will be

summarized as follows:

1) Means for jiggling a projected image f(x+ C, y+ 6) where e and 6 are small

periodic functions of time.

2) A light valve such that an image g(x, y) = c f(x, y) where c = 0 or c = 1.

3) Means for OR'ing two images in the Boolean sense. If :(x, y) is a stored image

it is to be replaced by f(x, y) + g(x, y) where g is the projection of another

stored image. This is easy to accomplish by making f(x, y) the latent image

on a photographic film, but the slow speed and non-erasability make it un-

suitable here.

4) Means for AND'ing two images in the Boolean sense, i.e., f(x, y) • g(x, y) over

the plane.

5) Means for complementing or iegating the image in the Boolean sense. High
contrast photographic film does this-, but again it is too slow and permanent.

6) Means for erasing the image. This is necessary when a new value of the

function f is to be started. It may similarly be required to make the whole

14

CONTROL (RETURN NEW x)

.. *s.s iREG.
', 4. • 4. R O

p REG.

CONTROL (+OR*) ..

CONTROL (SHIFTS) X1 Xt X3 X4

Fig. 7(a). Detailed view of 5(b).

ii s REG.

IM• p RE.

x REG.

Fig. '7(b). Optical processor using sequential logic.
15

plane equal to Boolean 1, but this is easily accompli. hed either by flooding

with light or erasing and complementing.

7) It also seems desirable to be able to regenerate the images. All of the opera-

tions described are needed at a lattice of discrete points x = xon, y = yom, and

the signals at these points are to be 0 o;o 1 or some scale. After many opera-

tions, errors will accumulate and the point images will spread and overlap.

This will eventually cause errors unless the signals are periodically cleaned

up.

Not all of the above are required, since it has already been explained that either

the OR or the AND can be eliminated by using the other and NOT.

5. A LINEAR MEMORY ARRAY

A novel type of distributed memory has been described by C. Y. Lee(28) and several

other authors.(2 9 ' 30) The structure to be used here differ from Lee's in that no control

sends signals to or receives signals from all cells simultneously. This permits in-

dependent operations in many parts of the array, and might also result in circuits with

fewer leads so as to facilitate integrated circuit fabric ition.

The basic idea of the linear memory array will be explained briefly. Suppose it is

desired to store the table

Name Item

1 23

12 51

4 1

In the usual computer memory the names would be addresses, would all have the same

length, and would not have to be stored explicitly; and the items would be the stored

words, and would also all h:Mve the same lengths. In the present structure, as illustrated

in Fig. 8, the table would be stored in the M register as 4I 8234 12805144 i4. It is

rsired to find the item whose name is 1 2, the signal 4 12 e 0 0 0 0 would be fed into the

left end of the R register chain and would cime out the right and as 4 1 2 0 5 1 00. The

A register is used to keep track of how many digits of the name have been matched, how

many d of the item have been copied out (the "activity" of the Lee memory), and

"whether the memory is being read or written into ("commands" of the Lee memory).

The details of how the above reading process is carried out can now be followed

by the example shown in Fig. 8, and by giving the state transition rules for all registers.

The interrogating signal can be seen moving across the bottom of Fig. 8. Note that it

is reversed in the physical snapshot because of the left to right propagation. The M

16

F 1M 1 Mw~

LOGIC LOGICLOI

RI-I .Ri Ri+I

M register states

0 0 04 i e 2 34 1 2 e 5 1 4 4

S 2 1

Match • 1 4
starts 8 2 1 1

e 2 1 4
Match is lost2------1'

Match starta again 12 4
6 21 1 4

0 2 1

0 0 Be 2 1I
o 0 Oa, 2 1 4
o 0 03 2 i

Match is completed 5 2

()0 5 e 2
Item copying starts 0 14 5 6

0 1 5

Copying is 1nished

Fig. 8. Reading

17

,,egisoers do change duzing reading. The R registers simply shift from left to light
at each tray "n unless Ai. 1 = 3, in which case M. is shifted intr R. instead of Ri-1
(but not if R. 4. The contents of the A regib~ers are shown a. subscripts to the

contents of the R registers in Fig. 8, except that the quiescent state A. = 0 is omitted.
The A registers are initially 0 and revert to 0 unless otherwise stated. The start of

name matching is indicated by M. - .. = 4, and this causes A. to become 1. The con-
1 1 1

dition A. 1 = 1 causes Ai to become 2 and Ai to become 0 regardless of the conditions

of M. and R.. If A. = 2 and M = R . 4 C, the match continues and A. becomes 1. The%'1 1 1 1 1 1

complttion of the same matching is indicated by A = 2 and both M. and R. equal to 8,
the name-item separating symbol. At this point, A. becomes 3, which starts the item

copying process and also causes Ai+I to become 4. The condition A.- = 4 causes A.
to become 3 to continue the copying, unless Mi= indicating the end of the item, or

Ri =4 indicates the end of the space allocated for the item.

S. far, the description has covered a read-only memory. There zre two ways in
which it might be desired to write into a memory with stored names: 1) to replace the

item associated with a given name with another item, and 2) to add another name-item

combination. The former is illustrate d in Fig. ,. The activity register accompanying

each symbol to be written in is set to 5. Activity state 5 propagates to the right unles

there is a 2 on a 7 to its right, in which case it becomes " 6. Activity state 6 propagatr
. to the right just once by changirg into a 7 and disappearing. Finally, if Ai = 7, on the

nen:t transition the contents of Ri are shifted to M., The second type of writing involves1 1

some adiditional difficu:l.ties and will not be treated until later.

No atempt has been made to m 4 Aimize the number of states in the memory just
descrit.,v. Each cell would have N = 7((%+3)2 states where the number of symbols in

the names and items is OL. The 3 corres from the markers 4 and 0, and tni. blank 0.

The 7 comes fro-n the activity states. If the stored symbols are hexadecimal digits

a = 16 and N = 2.2' < 2 12, thus ii seems that 12 flip.-flops Pre necessary to store 4
bits. The efficiency is not really that bad, because i) the name is stored as well as

the item, ii) the .. 'rnes and items can vprr in length, thus allowing compression over

fixed word length mnemoriet, iii) the memory has desirable associativt features an(
more can be er sily added, and iv) the memory size is completely flexible in that more

capacity can be added without modifying circuits already present.

There is a problem in efficiently packing data in the shiftir.,' type of linear memory

array. Suppose part of the table is

31 14

123 3115

and the request 12 3 80 004 3 1 8 0004 is fed in. With the activity states as described

above the output would be 4123831 1431 04004, thus the 5 is lost and two sym.'bols

18

S

S4 2 3

S4 O 2 3

4 25 i s 8 4 4

+ 4 e 2 3
4 25 1~ 5 8 1 4

4 4 0 2 3

4 22 15 89 4

4 4 2 3

4 25 15 ev 4 4

4 4 8 2 3

S4 2 1~ 83254 e e 3

S1 e 4

~ 5 7' 8

S 44 8 1 3

4 24 e 1 8

2 1 1 e 46

448 1 2

42 1 84

44 1 2

Fig. 9. Writing - Replacing item

19

after the 4 are wasted. The former is more important since information is lost, yet

if the lergth of the items are not known ahead of time, the only solution seems to be

to leave the maximum possible space after each name of the request thus making even

more wasted space. It would be nice if extra spaces could be inserted by holding up

the string of requests which are following the pertinent one:

holdup -40 011 113

However, this requires that a signal be sent from right to left instantaneously and for

an unbounded distance, thus violating the usual definitions of cellular arrays of finite

state machines. If such a signal is not sent, in the example above the 3 will try to re-

place the 4, the 1 will try to replace the 3, etc., and one of each pair must be lost.

One way to avoid the need for instantaneous distant signaling in holding up a shift

register is to provide blank spaces, i. e., cells in the 0 state, between the symbols

being ,-rifted. This is ullustrated in Fig. 10(a) where in extra symbol posit4 .on is

created between A and BCDby means not shown. Observe that when BCD are moving,

they are spacei two cells apart, when "marking time" they are space one cell apart.

The state transition rule is simply that Ri is changed to Ri c.,'ly if R. is initially 0,

otherwise Ri remains the same. If the first symbol being held, B here, is allowed to

move then the remainder automatically move at the correct time to again provide

blank cells. The process resembles a double-ranked shift register in some respects,

and the storage efficiency is similarly cut in half. The efficiency could be increased

at the expense of communicating to more distant neighbors by bunching the symbols,

e. g., ABOCDU • .. , but the simpler case of alternate blanks will be used here. Holding

to avoid errors in reading into insufficient space is shown in Fig. 10(b). Notc that in

this case an additional advantage is realized: one of the two extra spa'c6 in the block

which the 4 was read have been eliminated. This evening-out process would be very

useful in implementing a variable length encoding for signal compression.

Three other possible modifications of the linear array memory will be mentioned:

First, instead of the name matching ending in failure on one mismatch, with more

activity states the match could be called satisfactory with 1, 2 ... errors. Second,

the name matching could simultaneously erase the name in the request, but here cau-

tion must be exercised so that a partial match will still permit subsequent tries.

Third, an economy can be sometimes realized if the namne-item combinations are stored

in numerical order.

The memory circuits just described would have certain advantages if they were

interrogated and read from the same end. It would be easier to make memories

whose size is flexible (expandable), freqaently usei items could be obtained more

20

DI C B A

D C B A

D C B A

D CB A
D CB A

DIC B A I I I

* D C B A IA

D C B AI

Fig. 10(a). Creation of space without instantaneous signals.

14 e 1 3 4 1 3 9 3 2 Z

144

4 e 1 . 3 4 1 3 10 _3 - 1 -

I4

4 4 1 e 3 3 1 1 5 I 3 1z 1 1 L

4 81 1 3 4 1 3 1 3 2_1

14 1 1 3 1 _ 1 1 3 3 2 1
4 0 4 1 3 3 4 1 3 1 3 3 a 2 _

4 1 11 1 3 1_1 1 3 e 13
r 4 ' ' 4 9 3 _, i i 3 0 3 2 1

44 4 1 3 1 3 3 0 3 2 z

441 4 0 1 3 4 1 1 1 3 0 3 2

4 e 1 3 45 11 1 3 e 3
4 4 134 1 1 3 0 1 5 1 3 2

44 01 1 1 15 111 303

4 ~~~ 481 3
4 4 e 1 3 4s 1 1 33

4g 84 Ef1 345 1 1 3 o

, ~Fig. 10(h',. Efficient packing of read items of unknown lengths

4

quickly, and a branching structure to be described below would be easy to implement.

In the upper left of Fig. 11, it is shown how to store the name-item combination for

straight-thru and reflected reading. The rest of Fig. 11 shows how the name propagates

thru a branching memory structure looking for a match. At each junction the name

goes both ways, so that the size of the region being searched goes up exponentially with

time. If the length between junctions is L 1 bit cells, in t seconds the number of cells

searched is

N = L(+2+4+ ... +2)o L(-)

where to is the time required to search 1 cell. Solving for t-
N

t = 3.33 tL log 0 --

As an example, if t = lps. L = 100 and N 106, then t is 1. 3ýs. Or, consider a10o

"brain" of 1010 neurons with t = 5ý;s. and L = 20, then t is 2.9 sec. Here is another0

way in which parallel operation can result in relatively fast overall operation and with-

out broadcast controls. The reflected reading mode would require means to prevent

interference between returning items if several simultaneous interrogations are to be

allowed. Writing into the branching or dendritic memory could be accomplished by

the new name-item combination taking either branch at random each time a junction is

reached. The combination would be stored when a sufficiently large empty space was

found.

6. MULTIHEAD TURING MACHINES.

The optical processor and linear memory arrays might be regarded as examples

of the middle path in Fig. 1. A few ideas on how the lower path might be followed

will now be given. More details will be found in Ref. 4. Before describing the Turing

machines themselves, some convenient terminology and conventions will be established.

The computer structure of interest here is a linear array of finite state machines

such as mentioned above, but without the control box or broadcast leads to all cells.

It is important to have a convenient formalism with which to describe the action of such

an array, since the mechanism is very unlike conventional computers and many things

will go on simultaneously. Roughly speaking, the behavior of the array can be described

passively or actively. In the passive description, one says that the state of a cell at

time t+] is a function of its state at time t and of the state of its immediate right and

left neighbor at time t. This passive description is the most general one, and if each
3cell has n possible states, it consists of a table of n entries. In the active description

one says that a cell in state S. at time t causes its own state to become S. and its right1 3
neighbor (for example) to become S at time t+ 1. This active description cannot be

k

22

NAME ITEM
EMAN EA

NAME ITEM
METI EMAN

STRAIGHT-THRU READING

_MN

METI NAME ,
EMANMA

METI NAME 2
4-* EMANN

METI NAME
ITEM

REFLECTED READING M
AS INE

3 NAME

5

//
4 E

A~ EN
MA

VM

[IT

Fig. 11. Dendritic memory.
23

general since if it cons'dts of a table of only n entries, then the situation where a cell

is given contradictory orders by its two neighbors must be avoided. The active descrip-
tion seems natural to describe the action of a Turing machine where a head changes

state and moves right or left, or to describe some solutions to the firing squad syn-
chronization problem(38) where signals can be visualized moving thru the array. If

the active description is augmented by providing a set of rules to resolve conflicts when
a cell receives contradictory orders it becomes as general as the passive description,

but unless the cell structure is particularized the conflict rules will comprise the bulk

of the description.

The first particular cell structure will consist of two registers: Q of (Oa + 1) states

and S of a states, and n = (a + I)a. The register S can be considered as containing

one of the symbols 1, 2 ... a which might be written on the tape of an equivalent Turing

machine. The register Q can be considered as containing one of the states 1, 2.. a
of the head of the Turing machine, or a 0 representing a tape position with no head

there. If the Turing machine has only a single head, only one of the Q registers is

non-zero at a time. Now suppose the states of the various cells in the array be repre-

sented as a sequence of numbers representing the contents of the S registers with sub-

scripts representing the contents of the Q registers, e. g.

3 .. 35 10 ...

If the quintuple table of the Turing machine has the entry (2, 5;6,4, R), then the next

array of states will be

.. 30 4 0 1 61 0

The above was an active description, a passive description of the same transition
would be that the active table of (a + 1)3a 3 entries contains (30,F 2, 10;40), (52,1(, 10;16)

among many others. In this case the simpler active descriptiurn is possible because of

three features of the Turing machine which prevent conflicting orders: (i) The new
state of the S register depends only on the previous states of the Q and S registers in
the same cell. (ii) The new state of the Q register is 0 except possibly when one of

its immediate neighbors has a non-0 Q register, and in this case the new Q depends
only on the old Q and S of that neighbor, and (iii) There is only one non-0 Q register in

the array. Perhaps the clearest way to describe a Turing machine is the state diagram

used by Minsky (3 9) in which the above transition would be represented as

The full convenience of this formalism is demonstrated by a state 3 which moves right

until it finds an 8:

24

. 1030 5370 10403080 70'*

1 .. 130 50 7 310 40 30 80 7 0...

. 0 3o0 50 70 1 4 30 80 70

1 0 1030 50 10043 3 0 8o0 7"0

1 . 10 35 0 70 1040 33 80 70.

1 . 1030 50 70 1040 30 83 70"'"

1 .. 1307 104032 1070'

There are Turing machines in which the direction is not a function of the head state

alone (independent of the tape symbol) but they can always be replaced by an equivalent

"directed state machine."

Multiple head Turing machines can be described by slight modification of the above

formalism. If two heads are operating simultaneously and independently on remote parts

of the same tape no modification of the above diagrams or tables is required. The birth

of a new head can be represented by a diagram with two similarly-labeled arrows lead-

ing the same state. As an example, the diagram part

QL3L

might cause the sequence of array states:

0 1 110 2 0 1 i 1

0 11 01 2 0 1 1 1

0 1 1 0 21 0 1 1 1

0 1 1 C 2 3 03 1 1 1

0 1 12 0 3 0 13 1 1

SFor convenience and clarity the 0-state subscript (indicating no head) has been omitted.

It makes it easier to generate a new state moving in the same direction if a "no move"

transition indicated by N is permitted. Thus

25

0
might then cause

0 1 1. 0 2 0 1 1 1
0

0 1 1 012 0 1 1 1

0 1 1 0 210 1 1 1

'4 30 1 1 0 3 031 1 3 1

0 1 1 0 3 0 1 3 1 3 1

Note that the active description needs no clarification here because two heads do not

try to move onto the same square simultaneously. It is easy to kill a head simply by

making it go to the 0 state. One head out of many can be saved by using a gate which

is closed by the first head, e.g.:

0 110 01 8 0 1 1

0 1 1 0 8 0 1 1

0 1 0 01 9 01 1 i R 8

0 1 0 0 910 11 1,9

0 1 0 0 9 0 1 1 1 O

If it is dekired to have two heads pass each other in opposite directions without inter-

action there is no difficulty and the diagram need not be augmented if they are Reparated

by zr even number of cells:

02 1 1 0 1 1

0 121 0 111 L

0 1 12011 1

0 1 1 021 1

0 1 1 0 12 1

The diagram could be augmented if it is desired to have the heads intevact. Suppose

the 2 state above is to kill the 1 state. This could be shown by putting a triplet label

on each arrow such as

"26

02 1 1 0 1

o0 12 1 0 1 1 1 2

0 1 1 01 1 1

0 1 1 02 1 1
0 11 1210 1 1 012 T
0 1 1 0 1 12

Here e stands for any symbol.

Note that passing heads , -parated by an odd number of cells are more dltiicult to deal

with under the convention that only neighboring cells can comrn.unicate. Thus, in the

above example if

02 1 1 0 1 I

0 12 1 01 1 1

0 1 1 0 i 1x

what is x to be? If head 2 is again to kill head 1, then x = 2. But if both heads are to

succeed independently x can be neither I nor 2 nor can x convey the information necessary

to preserve both 1 and 2. See Ref. 4 on this point.

Two ways in which multiple heads can speed up the operrtion of a Turing machine

are by carrying out several similar operations simultaneously in different parts of the

array, as shown in Fig. 13, and by transferring data in blocks instead of symbol by

symbol, as shown in Fig. 14. In either case, the examples show that there is very

little increase in the complexity of the state diagram caused by the possibility of addi-

tional heads. Left and right moving states are indicated by squares and circles re-

spectively, with a triangle indicetting a head which does not move (a uni'. delay here).
'p. (39)

Figure 12 shows a unary multiplier from page 125 of Minsky's book. It is modified

so that when the multiplication is completed the activity moves on to the right looking

for another pair of numbers to be multiplied. The multiple-head version shown in Fig.

13 does the same thing except that the activity moves on to the right and simply drops

off an extra head to complete any multiplication which has been encountered. Only one

extra state is required, and this is the halt state! A~new symbol, C, is provided to kill

the activity when required, and also (by states not shown) to avoid having left-moving

states interfere with the multiplication before it is finished. The latter point is illu-

strated by the state 17 in the lower right of Fig. 13 being stalled as state 18 until

completion of multiplication. A multiple-head word copier is shown in Fig. 14, being

essentially Fig. 6. 1-6 of Minsky's book. (39) The word BBA is converted to states 344

which simultaneously move left and are reconverted to symbols BBA. Only 2 extra

27

B

A

OA I I BI IIAOOOOO

200

OAOOBXXAXXXXO

Fig. 12. Unary multiplier Turing machine.

28

A B A C A B A C
B x

"4"OGC LOGC •

AA CB

)

12'

Fig. 13. Multiple-head Turing multiplier.

Z9

oIv

ABBA

all
'47

O Y OXXA A A A A A B O X

P"L44 33
.4

'#40* BB

444

YBBAXXAAAAAABBAX

Fig. 14. Multiple-head Turing word copier.II 30

states are required, and one of these is the halt state. Note that the first head to go

thru the left writing region, state 7, changes the marker symbol from Y to "Y, and that

Y then kills all of the followini. state 7 heads. This example shows a close connection

between multiple-head Turing machines and the memory structures of Section 5 above.

7. VARIABLE LENGTH CODING.

It has been known for a long time that most communications are quite redundant

and therefore capable of being considerably compressed. In 1948 the famous theory

of Shannon expressed exactly how much compression is possible, and also provided

means for designing codes to achieve compression arbitrarily close to the bound. In

spite of these facts, little application has been made of compressed transmission of

information. It is not so much Liud the coding apparatus would be complicated, for
example the code

00 -0 0
01 - 10

1 "-P l

could save almost two timeR and is extremely simple tc implemený. The real difficulty

is that the calculated comrpression occurs only on the average iver a long time interval.

Using the above code, a run of l's actually is expanded by the code, but tbis will be

compensated by even larger runs of O's at a later time. Thq real problem in the ap-

plication of such codes is in buffering to allow the source and channel rates to be con-

stant while still absorbing temporary fluctuations in the compression ratio. Syn-

chrcnization problems caused by the variable length words cause additional difficulties

if there are channel errors.

The variable length compression codes might provide a very good applicatio.i for

the linear memory array described above in Section 5. The stored name-item com-

binations would be input-output word combinations of the code table. The rate of read-

ing the memory would be high and the large fixed delay would be of little consequence.

The method for creating and filling in gaps illustrated in Fig. 10(b) would even out the

fluctuations in compression ratio. The fact that the word pairs can be stored in any

order makes the coder quite flexible. The structure with many identical cells, few

connections between cells, and few outside connections makes the circuit ideal for

integrated circuit fabrication.

31

. APPENDIX 1. LOGIC CIRCUIT COMPLEXITY
I-

The engineering problem of minimizing the complexity of switching circuits is

really a m3dern version of the logical problem of simplifying Boolean expressions. In

fact, one of the most frequently use3 algorithms for the circuit problem was developed

by Quine for the logical problein. Some terminology will be established by reference

to the function f(x, y, z) which is 1 except when exactly two of its arguments are 1.

f(x,y,z) = (x+y+zl)(x+yl+z)(xi+y+z)

"f(x,y,z) =xyz+xy'z' +x'yz' x•xyz+ x'y'z'

These are the canonical expansions: conjunctive or a product of maxterms, disjunc-

tive or a sum of minterms. If the products of the sum are not required to each contain

all variablec (i. e., not to be minterms) simpler sum of products can be obtained:

Sf(x, y, z) = xyz + x'y' + Iy'z' + x'z'

A still simpler expression can be obtained if it is not required that it be a sum of

products:

f(xY, z) = xvz + x'(y'+ z') + y'z'

In order to talk of simplifying the expression for a given function, some measure of

complexity is required. Two common measures are A, the number of variable

appearances, and B, the number of variable appearances plus the number of terms

of more thar ne factor. If the expressions are realized in the obvious way, then A

corresponds to tf.c -umber of relay contacts, and B corresponds to the number of diodes

or gate inputs. For the ixpressions above, A = 9, 15, 9 and 8, while B 12, 20, 13,

* and 12. The circuits for the last expression are

0" 0--00--J-0 0'
y z

Tie least upper bound on A and B as functions of the number of variables n and for

each type of expression (class of circuit) is important in discussing circuit complexity.,

The first three expressions will be called 2 level, the last 3 level. In general the rumbe-

of levels k will be defined as the maximum depth of nested parentheses in the expression

if none are omittt 1, i.e., write ((xy) + (/'z)) not xy + y'z, or as the maximum number

of gates a signal must pass thru in the gate circuit. The following table summarizes

what is known about the bounds on A and B for various cases:

32

Ex[ression Contact Circuit A Gate Circuit B

Disjunctive
canonical -- 00-*0--

St;,,:,of min- --- .- o-oo-o -- 4P (n+ 1)2'tr, in s

Sum of
products 0 0

n2n- 1 (n+)1 "I

0-0 0--*0-12

2-level

Sum of
products
of sums o-00-0~2

-- 0 (logzn)]2n- 1 .(logzn)]2 n-

iI
3-level

General Series-parallel

__ j7 _ 0-3 2 n-1 2 5.2n-i -4

•-o 0• •_ 0--arbitrary-level

SGeneral General

2n+l 2 n

_ • n I logan

Shannon-Lupanov fan-out 1

33

Most of the published work on switching circuits in English is concerned with

minimization methods and not bounds. The Russians have done much more in the field

of general synthesis and bounds, and this is reviewed, together with American work,

by Kautz.(3 i) The reader is warned against two misprints: the translation of one of

Lupanov's articles has nZn 2 as the bound for 2-level contact networks instead of
A (ZadSann3 3) n-l1nlnn-l, and Shannon(3 mentions 3. 2n + 2 instead of 3• 2 n-1- 2 in correcting his

S previous statement(3 2) that this bound is attained by the parity function. Apparently

3. 2 2n'-2 iE still the best bound known for series-parallel contact networks, but it is

not known to be a least upper bound.

No published bounds on 3-level logic elements could be found, the bound shown

was derived as follows: Let the function to be expressed in sum of products of sums

be f(x1, x2 ... xn). Expand f as follows:

f(x .. xn) = XX2 . f(O, 0O.. 0, X xn) + xlx nx12 n-in n-m+l1 n l1 2 n-rn

•f(1, O"' 0, Xn m l ° x) +"' + 1XlX2•..x, _ f(1, 1 ' lX~~...xn)x
n-~ n12 n-rn n-m+l* n

Next, expand each of the functions on the right as the product of sums which has the least

variable appearances. There will be at most m2m- such appearances in each of the

2n-m functions, and if the (n-m)2n-m appearances of x1 •. Xn-m as coefficients are

added the total is bounded as follows:

A < 2n-m(n-m + m2m-l) 0 < m < n

As a check, note that if m = 0 a minterm expansion is obtained, and if m n a (dual)

sum of products expansion is obtained. For intermediate values of m the value in-

dicated is less than at either end. If the requirement that m be an integer is temporarily

dropped, the value of m which minimizes the bound can be obtained by differentiation.

The optimum value of m is the solution of the transcendental equation

m = log,(n-m + logze) - log 2 (log2 e) + 1

An approximate solution is m = log2 n, and inserting this in the above bound gives the

value in the table. Note that for large n, increasing the number of levels permitted

from 2 to 3 to = decreases the coefficient of 2n-I in the bound on A from n to log 2 n to

3.

34

REFERENCES

1. A. E. Laemmel, '"General purpose cellular computers, " Symposium on Computers
and Automata, Polytechnic Institute of Brooklyn, April 13-15, 1971.

2. R. A. Larson, "Algorithms for word problems, " Report PIBEP-69-036, Poly-
technic Inst. of Brooklyn, June 1969.

3. J. F. Bevaqua, "Logic design for a small computer, " Report PIBEP-70-057,
Polytechnic Inst. of Brooklyn, 1970.

4. L. Librizzi, "Cellular multihead Turing machine, " Report PIBEP-70-058, Poly-
technic Inst. of Brooklyn, 1970.

5. A. E. Laemmel, "Parallel computers, " pp. 283-6 in Progress Report No. 34 to
JSTAC, Report R-452. 34-69, Polytechnic Inst. of Brooklyn, Nov. 1969.

6. A. E. Laemmel, "New methods for logical circuit synthesis, " pp. 364-8 in
Progress Report No. 35 to JSTAC, Report R-452. 35-70, Polytechnic Inst. of
Brooklyn, Nov. 1970.

7. A. D. Booth and KHV Booth, "Automatic digital calculators, " Butterworths, Washing-
ton, D.C., 1965.

8. Burks, A. W., H. H. Goldstine and J. von Neumann, " Preliminary discussion of
the logical design of an electronic computer, " in Collected Works of J. von Neumann
and reprinted Datamation, Sept.. , Oct. 1962.

9. J. von Neumann, "Theory of self-reproducing automata," U. of Illinois Press,
Urbana, Ill., 1966.

10. A.M. Turing, "On computable numbers with applications to the Entscheidungs
problem," Proc. London Math. Soc., Ser. 2, Vol. 42, pp. 230-65, 1936.

11. P. A. Dickson, "ARPA network will represent integration on a large scale,"
Electronics Vol. 41, pp. 131-4, 30 Sept. 1968.

12. G. H. Barnes, et al. "The Illiac IV computer," IEEE Trans. Vol. C-17, pp. 747-
57, July 1958.

13. G. L. Hollander, "Architecture for large computer systems, " Spring Joint
Computer Conf., pp. 463-66, 1967 - see also following 4 papers by Andahl, West
Fuller and Slotnik.

14. "Hopper against the big machine, " Electronics Vol. 44, p. 74, 13 Sept. 1971 -
many articles and notes on "Computers in the 70's. "

15. C.E. Shannon, "A universal Turing machine with two internal states, " pp. 157-165
in "Automata Studies, " Princeton U. Press, 1956.

16. K. Krohn, W. D. Maurer and J. Rhodes, "Realizing complex Boolean functions with
simple groups, " Information and Control, Vol. 9, pp. 190-5, 1966.

17. B. Elspas and H. S. Stone, "Decomposition of group functions and the synthesis of
multirail cascades, " Conf. Record of the 8th IEEE Sympos. on Switching and
Automata Theory, Austin, Tex., Oct. 1967 (pp. 184-196).

18. K. K. Maitra, "Cascaded switching networks of two-input flexible cells, " IRE
Trans. Vol. EC-11, pp. 13b-143, April 1962.

35

19. R.A. Short, "Two-rail cellular cascades," AFIPS Conf. Proc., Vol. 27, Part 1,
pp. 355-369, Spartan Books, Washington, D.C. 1965.

20. M. Yoeli and J. Turner, "Decompositions of group functions with applications to
two-rail cascades," Information and Control, Vol. 10, pp. 565-571, 1967.

21. I. Shinahr and M. Yoeli, "Group functions and multivalued cellular cascades,"
Information and Control, Vol. 15, pp. 369-376, 1969.

22. R. C. Minnick, "A survey of microcellular research, " Journ. of Assoc. for
Computing Mach., Vol. 14, pp. 203-241, April 1967.

23. W.H. Kautz, "Cellular logic-in-memory array," IEEE Trans. Vol. C- 18, pp. 719-
27, Aug. 1969.

24. A. W. Burks (ed.), "Essays on cellular automata" U. of Ill. Press, 1970.

25. S. N. Cole, "Real-time computation by n-dimensional iterative arrays of finite-
state machines," IEEE Trans. Vol. C-18, pp. 349-65, Apr. 1969.

26. J. N. Sturman, "An iteratively structured general-purpose digital computer, " IEEE
Trans. Vol. C-17, pp. 2-9, Jan. 1968.

27. R.O. Harger, "Synthetic aperture radar systems" Academic Press, New York,
1970.

28. C. Y. Lee, "Intercommunicating cells, basis for a distributed logic computer,"
Proc. Fall Joint Computer Conf. pp. 130-136, Dec. 1962.

29. C. Y. Lee and M. C. Paull, "A content addressable distributed logic memory with
applications to information retrieval, " Proc. IEEE, Vol. 51, pp. 924-.32, June
1963.

30. R.S. Gains and C. Y. Lee, "An improved cell memory," IEEE Trans, Vol. EC-14
pp. 72-75. Feb. 1965.

31. W. H. Kautz, "A survey and assessment of progress in switching theory and logical
design in the Soviet Union," IEEE Trans. Vol. EC-15, pp. 164-204, April 1966.

32. J. Riordan and C. E. Shannon, "The number of two-terminal series parallel net-
works," J. Math. Phys., Vol. 21, pp. 83-93, 1942.

33. C. E. Shannon, "The synthesis of two-terminal switching circuits," B01' System
Tech. J., Vol. 28, pp. 59-98, Jan. 1949.

34. M. J. E. Golay, "Hexagonal parallel pattern transformations" IEEE Trans. Vol.
_-18, pp. 733-40, Aug. 1969.

35. M. Ingran and K. Preston, Jr., "Automatic analysis of blood cells," Sci. Amer.
Vol. 223, pp. 72-82, Nov. 1970.

36. K. Preston, Jr., "Use of the Golay logic processor in pattern recognition studies

using hexagonal local neighbor logic, " Symposium on Computers and Automata,
Polytechnic Inst. of Brooklyn, April 13-15, 1971.

37. K. Preston, Jr., "Feature extraction by Golay hexagonal pattern transforms,"
IEEE Trans. Vol. C-20, pp. 1007-14, Sept. 1971.

36

38. A. Waksman, "An optimum solution to the firing squad synchronization problem,"
Info. and Control, Vol. 9, pp. 66-78, 1966.

39. M. Minsky, "Computation: Finite and infinite machines," Prentice Hall, 1967.

37

